41 research outputs found

    Hyperelliptic Curve Cryptosystems: Closing the Performance Gap to Elliptic Curves (Update)

    Get PDF
    For most of the time since they were proposed, it was widely believed that hyperelliptic curve cryptosystems (HECC) carry a substantial performance penalty compared to elliptic curve cryptosystems (ECC) and are, thus, not too attractive for practical applications. Only quite recently improvements have been made, mainly restricted to curves of genus 2. The work at hand advances the state-of-the-art considerably in several aspects. First, we generalize and improve the closed formulae for the group operation of genus 3 for HEC defined over fields of characteristic two. For certain curves we achieve over 50% complexity improvement compared to the best previously published results. Second, we introduce a new complexity metric for ECC and HECC defined over characteristic two fields which allow performance comparisons of practical relevance. It can be shown that the HECC performance is in the range of the performance of an ECC; for specific parameters HECC can even possess a lower complexity than an ECC at the same security level. Third, we describe the first implementation of a HEC cryptosystem on an embedded (ARM7) processor. Since HEC are particularly attractive for constrained environments, such a case study should be of relevance

    Understanding Cryptography: A Textbook for Students and Practitioners

    No full text
    Cryptography is now ubiquitous – moving beyond the traditional environments, such as government communications and banking systems, we see cryptographic techniques realized in Web browsers, e-mail programs, cell phones, manufacturing systems, embedded software, smart buildings, cars, and even medical implants. Today\u27s designers need a comprehensive understanding of applied cryptography. After an introduction to cryptography and data security, the authors explain the main techniques in modern cryptography, with chapters addressing stream ciphers, the Data Encryption Standard (DES) and 3DES, the Advanced Encryption Standard (AES), block ciphers, the RSA cryptosystem, public-key cryptosystems based on the discrete logarithm problem, elliptic-curve cryptography (ECC), digital signatures, hash functions, Message Authentication Codes (MACs), and methods for key establishment, including certificates and public-key infrastructure (PKI). Throughout the book, the authors focus on communicating the essentials and keeping the mathematics to a minimum, and they move quickly from explaining the foundations to describing practical implementations, including recent topics such as lightweight ciphers for RFIDs and mobile devices, and current key-length recommendations. The authors have considerable experience teaching applied cryptography to engineering and computer science students and to professionals, and they make extensive use of examples, problems, and chapter reviews, while the book’s website offers slides, projects and links to further resources. This is a suitable textbook for graduate and advanced undergraduate courses and also for self-study by engineers

    High Performance Arithmetic for Hyperelliptic Curve Cryptosystems of Genus Two

    No full text
    Nowadays, there exists a manifold variety of cryptographic applications: from low level embedded crypto implementations up to high end cryptographic engines for servers. The latter require a exible implementation of a variety of cryptographic primitives in order to be capable of communicating with several clients. On the other hand, on the client it only requires an implementation of one speci c algorithm with xed parameters such as a xed eld size or xed curve parameters if using ECC/ HECC. In particular for embedded environments like PDAs or mobile communication devices, xing these parameters can be crucial regarding speed and power consumption. In this contribution, we propose a highly ecient algorithm for a hyperelliptic curve cryptosystem of genus two, well suited for these constraint devices
    corecore